dialogy.types.entity.time package¶
Module contents¶
Time Entity¶
Provides the entity class for representing time in natural language. This entity is obtained via DucklingPlugin.
Plugin Walkthrough¶
In [1]: from dialogy.plugins import DucklingPlugin
In [2]: duckling_plugin = DucklingPlugin(
...: dest="output.entities",
...: dimensions=["time"],
...: locale="en_IN",
...: timezone="Asia/Kolkata",
...: )
...:
In [3]: duckling_plugin.parse("tomorrow")
Out[3]: [TimeEntity(body='tomorrow', type='value', parsers=['DucklingPlugin'], score=1.0, alternative_index=0, alternative_indices=[0], latent=False, value='2022-08-25T00:00:00.000+05:30', entity_type='date', origin='value', dim='time', grain='day')]
In [4]: duckling_plugin.parse("monday")
Out[4]: [TimeEntity(body='monday', type='value', parsers=['DucklingPlugin'], score=1.0, alternative_index=0, alternative_indices=[0], latent=False, value='2022-08-29T00:00:00.000+05:30', entity_type='date', origin='value', dim='time', grain='day')]
In [5]: duckling_plugin.parse("27th jan")
Out[5]: [TimeEntity(body='27th jan', type='value', parsers=['DucklingPlugin'], score=1.0, alternative_index=0, alternative_indices=[0], latent=False, value='2023-01-27T00:00:00.000+05:30', entity_type='date', origin='value', dim='time', grain='day')]
Workflow Integration¶
In [1]: from dialogy.base import Input
...: from dialogy.plugins import DucklingPlugin
...: from dialogy.workflow import Workflow
...:
In [2]: duckling_plugin = DucklingPlugin(
...: dest="output.entities",
...: dimensions=["time"],
...: locale="en_IN",
...: timezone="Asia/Kolkata",
...: )
...:
In [3]: workflow = Workflow([duckling_plugin])
In [4]: _, output = workflow.run(Input(utterances=["tomorrow", "monday", "27th jan"]))
In [5]: output
Out[5]:
{'intents': [],
'entities': [{'range': {'start': 0, 'end': 8},
'body': 'tomorrow',
'type': 'value',
'parsers': ['DucklingPlugin'],
'score': 0.3333333333333333,
'alternative_index': 0,
'value': '2022-08-25T00:00:00.000+05:30',
'entity_type': 'date',
'grain': 'day'},
{'range': {'start': 0, 'end': 6},
'body': 'monday',
'type': 'value',
'parsers': ['DucklingPlugin'],
'score': 0.3333333333333333,
'alternative_index': 1,
'value': '2022-08-29T00:00:00.000+05:30',
'entity_type': 'date',
'grain': 'day'},
{'range': {'start': 0, 'end': 8},
'body': '27th jan',
'type': 'value',
'parsers': ['DucklingPlugin'],
'score': 0.3333333333333333,
'alternative_index': 2,
'value': '2023-01-27T00:00:00.000+05:30',
'entity_type': 'date',
'grain': 'day'}],
'original_intent': {}}
- class TimeEntity(body, parsers=NOTHING, score=None, alternative_index=None, alternative_indices=None, latent=False, values=NOTHING, value=None, entity_type=None, origin='value', dim='time', grain=None, *, range, type='value')[source]¶
Bases:
dialogy.types.entity.base_entity.BaseEntity
Entities that can be parsed to obtain date, time or datetime values.
Example sentences that contain the entity are: - “I have a flight at 6 am.” - “I have a flight at 6th December.” - “I have a flight at 6 am today.”
Attributes: - grain tells us the smallest unit of time in the utterance
- classmethod apply_constraint(date_time, constraint)[source]¶
Check if date_time is inside constraint (LOWER_BOUND < date_time < UPPER_BOUND) :type date_time:
datetime
:param date_time: An instance of datetime. :type date_time: datetime :type constraint:Dict
[str
,Dict
[str
,int
]] :param constraint:{'gte': {'hour': 9, 'minute': 0}, 'lte': {'hour': 20, 'minute': 59}}
- Returns
True if date_time > constraint[LOWER_BOUND] and date_time < constraint[UPPER_BOUND]
- Return type
bool
- collect_datetime_values()[source]¶
Collect all datetime values from the entity
- Returns
List of datetime values
- Return type
List[str]
- property day: int¶
Returns the day of the month for the first datetime value.
- Returns
Day of the month
- Return type
int
- dim: str¶
- classmethod from_duckling(d, alternative_index, constraints=None, **kwargs)[source]¶
- Return type
Optional
[TimeEntity
]
- get_value()[source]¶
Return the date string in ISO format from the dictionary passed
date = { "value": "2021-04-17T16:00:00.000+05:30", "grain": "hour", "type": "value" }
- Parameters
date (Dict[str, str]) – Dictionary which stores the datetime in ISO format, grain and type
- Returns
date["value"]
- Return type
Optional[datetime]
- grain: str¶
- property hour: int¶
Returns the hour for the first datetime value.
- Returns
Hour
- Return type
int
- is_uniq_date_from_values()[source]¶
Check a list has a unique day
Where day is the date number for a month.
- Returns
True if there is a unique day in all datetime values
- Return type
bool
- is_uniq_day_from_values()[source]¶
Check a list has a unique weekday
Where weekday ranges from 0 for Monday till 6 for Sunday Ex: for “2021-04-17T16:00:00.000+05:30”, the weekday is 5 (Saturday)
Duckling may return 3 datetime values in chronological order. For cases where the utterance is “Monday”, (or any weekday for that matter) we will get 3 values, each value a week apart. We pair these dates and check the difference is 1 week long (7 days).
For example:
# Say, our 3 date values are: date values = [21-04-2021, 28-04-2021, 05-05-2021] # then we generate pairs as: [(21-04-2021, 28-04-2021), (28-04-2021, 05-05-2021)]
If the difference between these dates is divisible by seven, then the input was a weekday.
- Returns
True if there is a unique weekday in all datetime values
- Return type
bool
- property minute: int¶
Returns the minute for the first datetime value.
- Returns
Minute
- Return type
int
- property month: int¶
Returns the day of the month for the first datetime value.
- Returns
Day of the month
- Return type
int
- origin: str¶
- property second: int¶
Returns the second for the first datetime value.
- Returns
Second
- Return type
int
- set_entity_type()[source]¶
Returns the type for this entity
To pinpoint a time for any action, we need both DATE (either explicit or inferred) and TIME. We can get these in 3 possible manners:
- both DATE and TIME, the entity type here will be DATETIME
Positive examples: tonight, tomorrow 4pm, 7th april 2019 6pm, last 3 hours (Because it tells us about the date as well, that is today)
Negative examples: Yesterday I went to park at 3pm (because the user did not say yesterday and 3pm together)
- only DATE, the entity type here will be DATE
Positive examples: last month, last year, last 3 months, last 6 months, tomorrow, 27th oct 1996, 1st October 2019 till yesterday, yesterday, today, tomorrow, October, 2019, 27th October 1996 to 29th October 1996 etc
Negative examples: month, year, 6 months, 3 months (Since these do not have a fixed start and end date, it could have been 6 months from today, 6 months from tomorrow, previous 6 months. Therefore it only tells us a duration.)
- only TIME, the entity type here will be TIME
Positive examples: 3pm, 5pm, night, morning, etc
Negative examples: tonight (because the date part today is in it), tomorrow night, 6th April 5pm, 7 hours (duration because they didn’t mention a start/end time. It could be 7 hours from any time) etc
if we get the grain as one of (“day”, “week”, “month”, “quarter”, “year”), then the entity type is DATE if we get grain as one of (“hour”, “second”, “minute”) and we only have 1 value in self.values, then the entity type is DATETIME. if we get grain as one of (“hour”, “second”, “minute”) and we have either a unique date or a unique weekday, then the entity type is DATETIME. else the entity type is TIME.
- Returns
one of (date, time, datetime)
- Return type
str
- property year: int¶
Returns the day of the month for the first datetime value.
- Returns
Day of the month
- Return type
int